

D7.1 – Standardization Roadmap about Swappable Battery System for L-cat vehicles

Project contract n:	101135417 — STAN4SWAP — HORIZON-CL4-2023-HUMAN-01						
Work package, WP title	WP7, EU Standardization roadmap for swappable battery systems for L-cat vehicles						
Deliverable nr:	D7.1						
Deliverable title:	Standardization Roadmap about Swappable Battery System for L-cat vehicles						
Deliverable type:	PU – PUBLIC						
Document preparation date:	2025-11-27 – version 1.0						
Author	Bernard GINDROZ	BMGI					
Co-authors (main)	Peter Van Den Bossche	VUB					
	Michele Perani	НҮВА					
	Karl-Maria Grugl	KTM					
	Enrico Mayrhofer	PIAGGIO					
	Kirsten Glennung	CENELEC					
	Tim Wicke	FRAUNHOFER					
	Ludwig Speidel	SWOBBEE					

Consortium:

PIAGGIO & C. SPA, FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG EV, HYBA SRL, COMITE EUROPEEN DE NORMALISATION ELECTROTECHNIQUE, VRIJE UNIVERSITEIT BRUSSEL, KTM FORSCHUNGS & ENTWICKLUNGS GMBH, SWOBBEE GMBH, BMGI CONSULTING

Re	evision	history	3
		tions list	
Lis	st of fig	ures	5
Lis	st of tal	oles	6
Ex	ecutive	summary	7
1.		Introduction	8
	1.1	Standardization Landscape	
	1.2	Purpose of the deliverable	
	1.3	Outline of the deliverable	.10
2.		State of the Art	.10
3.		Needs for swappable battery system deployment	.11
	3.1	Interoperability and compatibility	
	3.2	Communication, safety and security	
4.		Needs for Pre-Normative Research	
5.		Standardization Gaps	.12
6.		Organization of the Standardization Roadmap	
	6.1	System Approach	
	6.1.1		
	6.1.2	·	
7.		Standardization Roadmap	
	7.1	Introduction	
	7.2	Standardization Roadmap at battery level	
	7.2.1	·	
	7.2.2		
	7.3	Standardization Roadmap at vehicle level	
	7.3.1	·	
	7.3.2	Standardization Gaps	. 25
	7.4	Standardization Roadmap at swapping charging station level	. 29
	7.4.1		
	7.4.2	Standardization Gaps	. 34
	7.5	Standardization Roadmap at Interfaces and full system management level	. 35
	7.5.1	Pre-Normative Research (PNR)	. 35
	7.5.2	l ·	
	7.6	Standardization Roadmap about communication	.38
	7.6.1	Communication protocols	
	7.6.2		
	7.6.3		
	7.6.4	0	
	7.6.5		
	7.7	Standardization Roadmap about validation of swap action at Swapping Charging Station	
8.		Recommendations and further steps	
	8.1	Regulation	
	8.2	Support of innovation and PNR	
	8.3	Standardization development	
	8.4	Education and Training	
9		Conclusion	51

Glossary......53

Revision history

Deliverable title: Standardization Roadmap about Swappable Battery System for L-cat vehicles Filename: D7.1 Standardization Roadmap about Swappable Battery System for L-cat vehicles_V1.0

Version	Date	Action	Partner
V1.0	2025-11-30	Final version	PIAGGIO

Abbreviations list

AFIR Alternative Fuels Infrastructure Regulation (EU) 2023/1804

BMS Battery Management System

CAN Controller Area Network protocol

CEN European Committee for Standardization

CRA European Cyber Resilience Act, Regulation (EU) 2024/2847

DPP Digital Product Passport

DSO/TSO Distribution System Operator / Transmission System Operator

European Union

IEC International Electrotechnical Commission

IP Ingress Protection (e.g., IP rating for dust/water resistance)

ISO International Organization for Standardization

LEV Light Electric Vehicle

L-category Vehicle (as defined in Regulation (EU) 168/2013 Annex I)

OEM Original Equipment Manufacturer

PNR Pre-Normative Research

SBMC Swappable Batteries Motorcycle Consortium

SBS Swappable Battery System

SOC State of Charge SOH State of Health

TRL Technology Readiness Level

V2G Vehicle-to-GridVPP Virtual Power PlantWP Work Package

WVTA Whole Vehicle Type Approval

List of figures

Figure 1: Standardization Landscape	9
Figure 2: The ecosystem of swappable batteries	13

List of tables

Table 1: Classification of specifications and standards based on economic effects	8
Table 2:PNR at Battery level	19
Table 3: Standardization Gaps at Battery level	
Table 4: PNR at vehicle level	
Table 5: Standardization Gaps at Vehicle level	28
Table 6: PNR at charging station/infrastructure level	
Table 7: Standardization Gaps at charging station/infrastructure level	
Table 8: PNR at interfaces and full system management level	
Table 9: Standardization Gaps at interfaces and full system management level	
Table 10: Standardization Needs for communication protocols	
Table 11: Standardization Needs for visual communication	
Table 12: Standardization Needs for written communication	
Table 13: Standardization Needs for Digital communication	
Table 14: Addition suggestions	
Table 15 : Needs for PNR and standardization work at swap action level	

Executive summary

The transport sector is responsible for around 25% of the EU total emissions. The European Green Deal is calling for all stakeholders of the European transport sector to support the deployment of cleaner and more energy efficient vehicles, to be able to live up to the goals set out in the Paris agreement. To this end, electric vehicles (EVs) play an important role in the decarbonization of the sector. However, the downtime required to charge the batteries of these vehicles is a hindrance to a more widespread adoption of the technology. This is true both when it comes to EVs used for long distance transportation as well as for the light categories (L-cat) EVs with limited energy storage capacity often used in urban environment for shorter distances. This hindrance can be addressed with battery swapping systems which allow the users of EVs to swap empty batteries with fully charged ones. This solution offers a lot of benefits for cities and citizens including improved air quality and potential support to solving congestion challenges. However, for the innovation to fulfil its potential interoperability is essential.

The Horizon Europe CSA (Coordination and Support Action) project Stan4SWAP recognizes the need for integrating standards into the innovation process from an early stage to ensure swift transition. The project works in a holistic manner along the full value chain of L-cat mobility to identify the issues, challenges, and gaps which may be eased by standardization. The aim is to ensure interoperability of swappable batteries among different vehicles and swapping stations. To boost the industrial deployment of this innovative technology, the project will develop a standardization roadmap for a Swappable Battery System for L-cat vehicles. This roadmap aims at being a full part of the EU standardization work program for the following years and send a significant signal to all stakeholders of the value chain to join efforts and contribute to the work.

The present document: D7.1 proposes a standardization roadmap and recommendations, in support of a swappable battery system for L-cat vehicles market and boosting its deployment, as a contribution to the EU's decarbonation mobility strategy, especially in an urban context.

Interoperability, compatibility, as well as safe and secure communication are overarching principles driving the drafting of this standardization roadmap.

The roadmap includes Pre Normative Research (PNR) and standardization challenges and needs related to swappable battery systems for L-cat vehicles.

Special attention is also considered regarding safe and secure swapping phase, with appropriate communication steps towards ensuring the swap of empty battery packs to charged ones, as well as evaluating if the battery packs are still valid for primary applications (mobility), or needs to move to secondary life, then to end of life.

Recommendations focus on:

- Regulation improvement, coherence, and complementarities
- Support to PNR
- Standardization development
- Education and training
- Strengthening active international cooperation

1. Introduction

Standards play a crucial role in fostering economic efficiency, particularly in the context of industrial production, technological innovation, and market expansion. When all conditions are met, standards create a robust framework that enhances productivity, minimizes costs, and accelerates market access.

Table 1 below summarizes main tasks standards contribute to support with the major related economic effects (Source: based on Tassey (1982, 2000) and Swann (2000)¹):

Task	Characteristics
Compatibility and	Description of required product characteristics for interaction in a tech-
Interoperability	nical system
	Favoring of component innovations
Quality and Security	Definition of set points, e.g. function level, performance and efficiency
	variance
	Reduction of the users' transaction costs
Reduction of variants	Limiting the characteristic attributes of a product / system, e.g. in
	terms of size and quality
	Favoring of economies of scale
	Reduction of investment risks
Provision of information	Provision of information to describe, quantify and evaluate (product)
and measured values	characteristics
	Reduction of transaction costs between suppliers and buyers

Table 1: Classification of specifications and standards based on economic effects

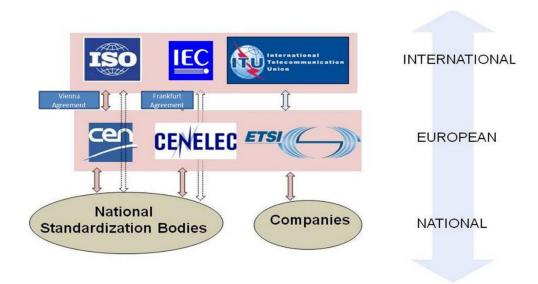
<u>Stan4SWAP</u> is a Horizon Europe CSA (Coordination and Support Action) project to boost standardization for swappable batteries of light electric vehicles (EVs of L-category) in support of a quick, effective and performant mobility scheme. While several standards exist for L-category vehicles, there is an urgent need to contribute in a significant and organized manner to setting up a roadmap for standardization in support of unified interoperable systems.

Stan4SWAP proposes to develop a robust standardization roadmap towards boosting innovation to market for Swappable Battery Systems for L-cat vehicles deployment as a major contribution to safe, secure, resources and environmentally friendly and interoperable decarbonization solution of the Mobility-Transport sector.

Tassey, G. (2000). Standardization in Technology-Based Markets. Research Policy, 29 (4-5), 587-602.

¹ Swann, G. P. (2000). The Economics of standardization. Final Report for Standards and Technical Regulations Directorate Department of Trade and Industry. Manchester Business School. University of Manchester Manchester 2000.

Tassey, G. (1982). The Role of Government in Supporting Measurement Standards for High-Technology Industries, Research Policy, 11, 311-320.


The project aims to contribute to the European regulatory, standardization, competitiveness, and excellence by disseminating its results to a wide audience and enhancing cooperation and engagement with international standardization organizations throughout the entire project duration. This specific aspect of the project is covered in this deliverable.

1.1 Standardization Landscape

There are three main levels of standardization, respectively national, regional (European in our case) and International.

Figure 1 below sums-up these levels and the main reference EU and International bodies, respectively:

- CEN, CENELEC and ETSI at EU level (Regional)
- ISO, IEC, ITU at International level
- National levels are composed with national standardization body (NSB) or several sector related bodies (NSBs)

Figure 1: Standardization Landscape

The three European Standardization Organizations: CEN, CENELEC, and ETSI, as part of the standardization landscape, are recognized as the European Standards Organizations (ESOs) by the European Union (EU).

Standardization in the field of swappable batteries mainly takes place at CEN and CENELEC, while ETSI, the European Telecommunications Standards Institute, focuses on ICT. Therefore, recommendations of this deliverable (standardization roadmap) where to address the identified standardization needs mainly focus, at EU level, on CEN and CENELEC, both headquartered in Brussels, Belgium, and ISO and IEC at International level, both headquartered in Geneva, Switzerland.

CEN is an association that brings together the National Standardization Bodies of 34 European countries. Likewise, CENELEC is an association that brings together the National Electrotechnical Committees of 34 European countries.

The two organizations represent a network of 90,000 experts, 366 European partners, and 482 Technical Bodies.

The total number of living documents from these organizations is 24,721 at the end of September 2025.

1.2 Purpose of the deliverable

This deliverable is the Standardization roadmap for swappable battery systems for LVs, with recommendations, including to the European Commission and European Standardization Organizations for future standardization needs and priorities to be addressed in line with related regulations and in support of EU's decarbonization strategy in the mobility sector.

Its main purpose is about boosting the deployment of swappable battery LVs, supporting interoperable, safe and secure solutions through standardization, as well as standardization in support of compatibility of sub-systems and components, as a contribution to EU´s objectives, to urban carbon neutral development, to overcoming existing barriers in the Single Market (industrial ecosystems), and to enhancing the leader role of EU standardization at global level, as well as branding its Excellence.

1.3 Outline of the deliverable

This deliverable has merged inputs from all WPs towards drafting this complete standardization roadmap (D7.1), with recommendations. Two on-line workshops (on July 15th 2025 and on Oct 06th 2025) opened to all concerned stakeholders have been organized toward completing and validating the content of the roadmap.

This deliverable results from the comprehensive state of the Art analysis (see chapter 2), to set the scene, followed (see chapter 3) by the list of needs in support of raising technical and technology maturity (feeding WP5 about needs for Pre-Normative research – PNR -), as well as in support of deployment (market) of swappable battery systems as a solution to L-category decarbonized mobility (feeding WP6 about Standardization Gaps).

The mapping of needs is organized with subdivisions at four levels:

- 1. Battery level
- 2. Vehicle level
- 3. Charging Infrastructure level
- 4. Interfaces and full system management (Communication towards safe and secure usages, including about validation process for allowing the swap process at charging station)

2. State of the Art

A comprehensive State of the Art assessment has been run, analyzed and reported, to generate a clear picture of the swappable battery system for LVs.

This includes the following:

- Technical & Market state of the Art, conducted and reported by WP2 in its deliverable D2.1
- Regulation and Standardization, conducted and reported by WP3 in its <u>deliverable D3.1</u>, which provides a comprehensive mapping for regulatory and standardized landscapes surrounding

- swappable battery systems, clearly identifying areas of action to address under "needs and gaps" (respectively, WPs 6, 7)
- Consolidated list of needs towards market deployment, conducted and reported by WP4 in its <u>deliverable D4.1</u>, identifying needs associated with implementation of swappable battery systems

For a successful standardization of swappable battery systems for LVs, all perspectives of the eco-system are considered. This maximizes the likeliness for the necessary interoperability and compatibility, enables the desired performance for different vehicle models, ensures safety, promotes acceptance (especially on the user side), and increases the overall efficiency of the swappable battery systems. The establishment of European standards will boost the widespread introduction of swappable battery systems. It also underlines the importance of Initiatives such as STAN4SWAP project and consortia like SBMC (Swappable Batteries Motorcycle Consortium) are essential in this regard.

3. Needs for swappable battery system deployment

3.1 Interoperability and compatibility

Task 7.1 of WP7 identified actions to be considered, in response of the need for "unified solution" – i.e. as requested in the AFIR – as a way to ensure interoperability between LVs' brands and models, allowing users and citizens to swap their batteries whatever their vehicle – no discrimination -.

Task 7.2 of WP7 identified actions to be considered, in support of compatibility of different components within the same battery or battery system, that can be standardized, with the aim to open the market to any supplier producing such standardized (certification) components.

Both outcomes justify the establishment and underline the relevance of the present standardization roadmap.

3.2 Communication, safety and security

Task 7.3 of WP7 addressed the challenges and needs regarding compliance with the new battery regulation, as well as communication at and between battery, vehicle, and charging station level. It also tackled needs related to informing users and operators, as well as about types of data, their collection, storage and communication, considering GDPR and cybersecurity aspects, for a safe and secure use.

Outcomes support the establishment of this standardization roadmap.

4. Needs for Pre-Normative Research

Needs for Pre-Normative Research are results from WP5, which focused on identifying and prioritizing key topics for Pre-Normative Research (PNR) related to swappable battery systems (SBS) for LVs. The outcome is a structured foundation for future standardization activities that support safe, interoperable, and scalable deployment of Swappable Battery System technologies across Europe. By aligning technical, regulatory, and stakeholder-driven perspectives, WP5 provides a robust basis for targeted and impactful standardization activities, contributing to the decarbonization and digitalization of urban mobility systems.

The methodology was based on the outcomes from WP2, WP3 and WP4, through expert discussions and structured evaluation. A wide range of PNR topics has been identified, assessed, and grouped into four core domains:

PU

- Battery level (Task 5.1)
- Vehicle level (Task 5.2)
- Charging infrastructure level (Task 5.3)
- Interfaces and full system management (Task 7.4)

Each topic was evaluated using a standardized matrix that included criteria such as TRL, regulatory context, standardization potential, and stakeholder relevance. The outcome (deliverable D5.1) is a prioritized list of PNR topics that has been further processed in WP6, then considered in the work of WP7, and completed, amended and validated during two workshops organized by WP7.

The outcomes are a full part of the present standardization roadmap (see chapter 6 below)

5. Standardization Gaps

Standardization gaps are results from WP6, following inputs from respectively WP2, WP3, WP4 and WP5. WP6 focuses on standardization gaps, where existing international and/or European standards (including projects under development) do not address specific aspects which are deemed essential for the batteryswapping of light vehicles. WP6 identifies future standardization work, in support of interoperability, compatibility, and safe and secure deployment of swappable battery systems for LVs. Analog to WP5, the identified topics were clustered into four domains:

- Battery level (Task 6.1)
- Vehicle level (Task 6.2)
- Charging infrastructure level (Task 6.3)
- Interfaces and full system management (Task 6.4)

By synthesizing expert discussions, regulatory, and stakeholder inputs, standardization gaps were identified, assessed, and grouped into these four core domains. Each topic was evaluated using a standardized matrix that included criteria such as TRL, regulatory context, standardization potential, and stakeholder relevance. The outcome (deliverable D6.1) is a prioritized matrix of standardization gaps that has lead the processing in WP7, where translated into its standardization roadmap.

6. Organization of the Standardization Roadmap

The work conducted in this WP7 has been organized through analyzing the outcomes from WP5 (Needs for Pre-Normative Research), respectively WP6 (Standardization Gaps), from 3 main perspectives:

- Interoperability, dealing with system and interface level (Task 7.1)
- Compatibility of components (Task 7.2)
- Communication incl. safety and security (Task 7.3)

The reason for this split of work is towards ensuring meeting main aims as described in chapter 3 above.

These outcomes feed a standardized matrix, based on the ones from WP5 and WP6, adding contributions from Tasks 7.1, 7.2 and 7.3, to the three perspectives here above.

6.1 System Approach

As guiding the entire work of Stan4SWAP, the identification of needs has been organized following a system approach, from components to applications with interface considerations, from vehicles to charging infrastructures, then robust, safe and secure communication.

6.1.1 <u>Description of the eco-system</u>

Figure 2 below describes the eco-system as considered in Stan4SWAP. This system comprises key elements, essential to the smooth operation and wide adoption of battery swapping systems for these vehicles:

- Swappable batteries (battery packs)
- Vehicles
- Swapping stations
- Battery Management Systems (BMS)
- Services and communication
- Broader infrastructure and society

Figure 2: The ecosystem of swappable batteries

Swappable batteries are components of **electric vehicles**, while Stan4SWAP has a specific focus on LVs. Swapping stations are providing standardized, safe, and readily available swappable batteries. In terms of physical elements, the standardization roadmap will, thus, concentrate on:

- Battery pack
- Vehicle
- Swapping charging station
- Grid

With two levels of direct interface:

- Battery pack vehicle
- Battery pack charging station

With three levels of communication:

- Battery pack vehicle
- Battery pack charging station for validation of swap and evaluation of the battery pack inserted (identification, SoH, SoC, thresholds to next life cycle stage secondary life, end of life and communication to users and operators)
- Charging station grid (data to grid for smart applications such as local grid balancing)

6.1.2 <u>Subdivision of the roadmap</u>

Based on the description of the eco-system above, the roadmap is subdivided in 2 parts, respectively for PNR and standardization gaps; Each part being dived in 4 tables:

- 1. Standardization Roadmap at battery level
- 2. Standardization Roadmap at vehicle level
- 3. Standardization Roadmap at swapping charging station level
- 4. Standardization Roadmap about communication

Each table will contain information that help the prioritization of the topics, both in terms of importance (Priority) and timing. Timing being expressed in terms of launching activities following the split as below:

- T1: to be launched within 2 years
- T2: to be launched within 4 years
- T3: to be launched within 5 years

The tables also contain information related to existing initiatives and committees where the topic can be allocated in due time.

Finally, the tables contain information about relevant categories of experts/stakeholders to engage in the standardization work.

For PNR, the following information are provided

Area	Maturity level (TRL)	Gaps & Needs (towards TRL 8-9)	Regulatory context	Standardization landscape (TCs, standards,)	Standardization expectation	PNR (topics proposition)	Priority level T1 → 2years T2 → 4years T3 → 5years	stake holder
------	-------------------------	-----------------------------------	-----------------------	---	--------------------------------	--------------------------------	--	--------------

For Standardization gaps, the following information are provided

Area	Maturity level (TRL)	Gaps & Needs (to- wards TRL 8-9)	Regulatory context	(TCs. SCs.	Standards and Regulations	tation	Priority level T1 → 2years T2 → 4years T3 → 5years	stake holder
------	-------------------------	-------------------------------------	--------------------	------------	------------------------------	--------	--	--------------

7. Standardization Roadmap

7.1 Introduction

The identification of domains/topics of importance, follows the work conducted in the previous WPs of Stan4SWAP, and especially WP5 about mapping needs for Pre-normative Research (PNR), where maturity still needs improvement prior to launching standardization development, as well as WP6 about standardization gaps.

These needs cover 4 different levels:

- Battery level (chapter 7.2): Topics such as thermal risk, BMS optimization, and secondary life, and end-of-life management (i.e. thresholds towards decision making).
- Vehicle level (chapter 7.3): Mechanical and communication interfaces, safety during operation, and homologation challenges.
- Charging station/infrastructure level (chapter 7.4): Station deployment, energy metering, and grid integration (e.g. V2G).
- Interfaces and full system management (chapter 7.5): Topics such as data exchange, liability models, and cross-provider platform interoperability.

In coherence with EU's decarbonization strategy and objectives, especially in the mobility sector as primary application, and contributing to the EC standardization request M/581, in support of the EU Alternative Fuels Infrastructure Regulation (AFIR) (EU) 2023/1804, the work is considering the following aspects, where standardization will have a key role to play (safety and security aspects being, of course, a topic considered in each aspect):

- Standardization towards interoperability
- Standardization towards compatibility
- Standardization towards communication

Thus, an additional subchapter (chapter 7.6) concentrates on communication, respectively:

- communication protocols
- visual communication
- written communication

- digital communication

This subchapter aims at identifying where standards could ensure a proper, safe and relevant operation through robust communication, considering the EU regulatory landscape, esp. for batteries and evenicles.

Another important subchapter (chapter 7.7), market oriented, is dedicated to validation of swap action at swappable charging stations, in a way to ensure proper communication with and to users and operators.

7.2 Standardization Roadmap at battery level

7.2.1 Pre-Normative Research (PNR)

Area	Maturity level (TRL)	Gaps & Needs (towards TRL 8-9)	Regulatory context	Standardization landscape (TCs, standards,)	Standardization expectation	PNR (topics proposition)	Priority level T1 → 2years T2 → 4years T3 → 5years	stake holder
Safety require- ments	The temperature tolerance and fire hazards measures needs to be standardized to ensure quality of the system	Standard safety feature protocols		IEC TC 69 IEC TC21 / SC21A CLC TC21X	Establishing to ensure the safety and sustainability of batteries used in two-wheelers, promoting a safer transport.	Define stand- ards and proto- cols for safety features	High (critical for avoiding hazards) T1 → 2years	Standards and regulatory authorities
Battery manage- ment system	The cell monitoring and temperature control withing the battery has no standard approach	Real-time SOH, SOC monitoring	Batteries Regulation (EU) 2023/1542	ISO TC 22 SC38	Ensuring reliability of the swappable sys- tem and promoting traceability and transparency	Develop fundamental state- monitoring requirements	Medium (ensures reliability and helps optimization of the operations) T1 → 2years	BMS and bat- tery manufactur- ers

Secondary life and End-of -life management	Guidelines for moving to next life (secondary), then end of life with recycling, disposal and repurposing of batteries are only at a minimal level	Establishing clear guide- lines at quantitative levels		Batteries Regulation (EU) 2023/1542	Support the EU's broader efforts to promote a circular economy and reduce the environmental impact of battery use and disposal.	Establish pro- tocols for end- of-life man- agement	Medium (essential for ensuring circular economy in the system) T1 → 2years	Battery manufac- turers and recycling partners		
Interface: con- nector (mechani- cal) vehicle <-> battery	standards for automobiles ex- ist. standards about connec- tions of perma- nently installed batteries also,	There are some good approaches with existing products, but not the perfect solution for all use cases. This gap should be closed through standardization in order to create a uniform and com-	Battery Reg- ulation (EU) 2023/1542 - Article10 Performance & durability require- ments		definition of a solid and reliable con- nection for a swap- pable battery solu- tion versus perma- nently integrated batteries,	define con- nector for power supply and data com- munication in- cluding me- chanical fixture	High (towards interoperability and compatibility) topics need further technical understanding	Battery and con- nectors manufacturers and OEMs		
Battery mechanical requirements	the physical dimensions (length/width/height), weight, IP rating and ergonomics are currently different for each OEM and should be standardized		prehensive solution that meets the diverse requirements. By introducing standards, interoperability and compatibility can be improved, ultimately leading to more efficient and user-friendly	prehensive solution that meets the diverse requirements. By in- troducing standards, interoperability and compatibility can be improved, ultimately leading to more effi- cient and user-friendly products.	Regulation 2023/1804 -Article 3 Targets for recharging infrastruc- ture dedi- cated to light- duty electric vehicles	ISO TC22/SC38 CEN TC301 IEC SC23H (TS63066)	definition of physical dimensions for a swappable battery solution versus permanently integrated batteries,	define physical properties of SWAP battery	and identification T1 → 2years	Battery manufac- turers and OEMs

Table 2:PNR at Battery level

7.2.2 <u>Standardization Gaps</u>

Area	Maturity level (TRL)	Gaps & Needs (to- wards TRL 8-9)	Regulatory context	Standardization landscape (TCs, SCs, WGs,)	Standards and Regulations to be amended	Standardiza- tion expec- tation	Priority level T1 → 2years T2 → 4years T3 → 5years	stake noider
Safety requirements		Streamlined testing/certification for Li-ion thermal runaway & propagation mitigation.	- Municipal building/fire codes vary by country.	CLC TC21X IEC SC21A IEC TC69	- EN 50604 & IEC 62619 (Li-ion battery safety)	- Possibly an extension of IEC 62840-3 for indoor applications.		- Battery station manufacturers
		Streamlined testing/certification for Li-ion thermal runaway & propagation mitigation.		CLC TC21X IEC SC21A IEC TC69	- EN 50604 & IEC 62619 (Li-ion battery safety)	- Possibly an extension of IEC 62840-3 for indoor applications.	High (critical for avoiding hazards) T1 →2years	- Battery station manufacturers
		- Clear underwriting guidelines for multi-operator systems.	- Battery Regulation sets performance & safety that insurers factor in.	C LC TC21X IEC SC21A IEC TC69	- EN 50604, IEC 62619 (battery safety) can inform insurability.	- Possibly recognized best- practices from insurers & sector alliances.		- Battery-swapping operators

	The temperature tolerance and fire hazards measures are needed to be standardized to ensure quality of the system	Standard safety feature protocols	Batteries Regulation (EU) 2023/1542	IEC TC 69		Establishing to ensure the safety and sustainability of batteries used in two-wheelers, promoting a safer transport.		Standards and regulatory authorities
Battery management system	The cell monitoring and temperature control withing the battery has no standard approach	Real-time SOH, SOC monitoring	Batteries Regulation (EU) 2023/1542	ISO TC 22 SC38		Ensuring reliability of the swappable system and promoting traceability and transparency	Medium (ensures reliability and helps optimization of the operations) T1 →2years	BMS and battery manufacturers
	~6-7 (robust BMS exist, but not fully standardized across networks)	- Unified SoC/SoH data model across different OEMs/stations.		Standardization committees (IEC TC69 WG13, ISO TC22/SC37)	- IEC 62840-1:2025 includes references for BMS data.	- Agreed data structure for consistent SoC, SoH, usage reporting across networks. Accurate calculation of battery capacity, SoC, usage patterns for daily ops.	Medium (technical feasibility proven; standardization needed for cross- compatibility) T1 →2years	BMS developers

End-of -life management	Guidelines for recycling, disposal and repurposing of batteries are only at a minimal level	Establishing clear guidelines at quantitative levels		Standardization committees (IEC TC69 WG13, ISO TC22/SC37)	Batteries Regulation (EU) 2023/1542	Support the EU's broader efforts to promote a circular economy and reduce the environmental impact of battery use and disposal.	Medium (essential for ensuring circular economy in the system) T2 →4years	Battery manufacturers and recycling partners
Longevity/durability	Different manufacturers use varying technologies and materials leading to discrepancies in battery lifespan	Standardizing durability metrics to ensure consistent performance across swappable batteries	IEC 62660 ISO 12405	Standardization committees (IEC TC69 WG13, ISO TC22/SC37)	- EU Battery Regulation (2023/1542)	Standard Testing protocols that simulate real- world conditions such as varying temperature, humidity and usage patterns	High T1 →2years	Battery manufacturers
Degradation rates	Standards like IEC 62660 and ISO 12405 provide guidelines for testing and evaluating battery performance, including degradation rates under various conditions.	Inconsistent metrics for measuring and reporting degradation rates, making it difficult to compare batteries from different manufacturers.	IEC 62660 ISO 12405	Standardization committees (IEC TC69 WG13, ISO TC22/SC37)	- EU Battery Regulation (2023/1542)	Establishing unified testing methods to measure and predict degradation to maintain reliability in swapping systems.	High (critical for ensuring reliability) T1 →2years	Battery manufacturers

Modular design	Modular battery systems	Absence of comprehensive	No existing regulations	Standardization	- EU Battery Regulation	Standards focused	Medium	Battery
	are guided by standards	standards for modularity in	for modular design.	committees (IEC TC69	(2023/1542)	on scalability,	(can help	manufacturers
	such as IEC 61960, which	battery packs, leading to		WG13, ISO TC22/SC37		adaptability of	widespread	
	focus on cell and module	challenges in interoperability		and SC38)		modular designs in	adoption of	
	specifications.	between vehicles and				battery pack level	the system	
	These standards promote	swapping stations.				to accommodate	and upgrading	
	uniformity in battery					future	future	
	dimensions, connectors,					technological	products	
	and interfaces to facilitate					advancements	T1 →2years	
	compatibility and ease of							
	integration.							

Table 3: Standardization Gaps at Battery level

7.3 Standardization Roadmap at vehicle level

7.3.1 Pre-Normative Research (PNR)

Area	Maturity level (TRL)	Gaps & Needs (towards TRL 8-9)	Regulatory context	Standardiza- tion land- scape (TCs, standards,)	Standardization expectation	PNR (topics proposition)	Priority level T1 → 2years T2 → 4years T3 → 5years	stake holder
Interface: con- nector (mechani- cal) vehicle <-> battery	standards for automo- biles exist and also connections for per- manently installed bat- teries, otherwise many OEM-specific solutions - not consistent	There are some good approaches with existing products, but not the perfect solution for all use cases. This gap should be closed through standardization in	Battery Regulation (EU) 2023/1542 - Article10 Performance and durability requirements		definition of a solid and reliable con- nection for a swap- pable battery solu- tion versus perma- nently integrated batteries,	define con- nector for power supply and data com- munication in- cluding me- chanical fixture	High topics need further	Battery and con- nectors manufacturers and OEMs
Battery mechanical requirements	the physical dimensions (length/width/height), weight, IP rating and ergonomics are currently different for each OEM and should be standardized	order to create a uniform and comprehensive solution that meets the diverse requirements. By introducing standards, interoperability and compatibility can be	AFIR Regulation 2023/1804 -Article 3 Targets for recharging infrastructure dedicated to lightduty electric vehicles	ISO TC22/SC38 CEN TC301	definition of physical dimensions for a swappable battery solution versus permanently integrated batteries,	define physical properties of SWAP battery	technical understand ing and identification T1 → 2years	Battery manufac- turers and OEMs

Battery electrical requirements	The minimum electrical requirements for voltage, capacity, charging power, configurations (parallel/serial) are currently different for each OEM and should be standardized	improved, ultimately leading to more efficient and user-friendly products.		definition of electrical requirement for a swappable battery solution versus permanently integrated batteries,	define electri- cal properties of SWAP bat- tery	Battery manufac- turers and OEMs
Interface: com- munication vehi- cle <-> battery	standards for an inter- face do not exist, many OEM-specific solutions - not consistent			Comparability of data exchange without significant change	define commu- nication proto- col for SWAP battery	Battery manufacturers, BMS, and OEMs

Table 4: PNR at vehicle level

7.3.2 <u>Standardization Gaps</u>

Area	Maturity level (TRL)	Gaps & Needs (towards TRL 8-9)	Regulatory context	Standardization landscape (TCs, SCs, WGs,)	Standards and Regulations to be amended	Standardization expectation	Priority level T1 → 2years T2 → 4years T3 → 5years	Partner / stake holder
Interface: connector (mechanical) vehicle <-> battery	standards for automobiles exist and also connections for permanently installed batteries, otherwise many	There are some good approaches with existing products, but not the perfect solution for all use	Battery Regulation (EU) 2023/1542 - Article10 Performance and durability requirements AFIR Regulation 2023/1804	ISO TC22/SC38 CEN TC301	new standard	definition of a solid and reliable connection for a swappable battery solution versus permanently integrated batteries,	High topics need further technical understanding and identification	Vehicle & Battery manufacturers
	OEM-specific solutions - not consistent	cases. This gap should be closed through standardization in order to create a uniform and	-Article 3 Targets for recharging infrastructure dedicated to light-duty electric vehicles				T1 → 2years	
Battery mechanical requirements	the physical dimensions (length/width/height), weight, IP rating and ergonomics are currently different for each OEM and should be standardized	comprehensive solution that meets the diverse requirements. By introducing standards, interoperability and compatibility can be improved, ultimately leading to more efficient			new standard	definition of physical dimensions for a swappable battery solution versus permanently integrated batteries,		Vehicle & Battery manufacturers

Battery electrical requirements	The minimum electrical requirements for voltage, capacity, charging power, configurations (parallel/serial) are currently different for each OEM and should be standardized	and user-friendly products.			definition of electrical requirement for a swappable battery solution versus permanently integrated batteries,		Vehicle & Battery manufacturers
Interface: communication vehicle <-> battery	standards for an interface do not exist, many OEM-specific solutions - not consistent	There are some good approaches with existing products, but not the perfect solution for all use cases. This gap should be closed through standardization in order to create a uniform and comprehensive solution that meets the diverse requirements. By introducing standards, interoperability and compatibility can be improved, ultimately leading to more efficient and user-friendly products.	Battery Regulation (EU) 2023/1542 - Article10 Performance and durability requirements AFIR Regulation 2023/1804 -Article 3 Targets for recharging infrastructure dedicated to light-duty electric vehicles	ISO TC22/SC38 CEN TC301	Comparability of data exchange without significant change	High topics need further technical understanding and identification T1 → 2years	Vehicle & Battery manufacturers

PU

PU

EU WVTA	current regulatory	EU L-category Type Approval	DG GROW	reg. (EU) 168/2013	Medium	
LOWVIA	framework does	Regulation (EU) 168/2013	DG GROW	Amendment of the		
	not consider the	Regulation (EO) 108/2013		regulation to	T2 → 4years	
	WVTA (whole			facilitate EU WVTA		
	vehicle type			for a vehicle which		
	approval) without			is designed to be		
	including the			powered by		
	dedicated			standardized		
	propulsion battery			swappable		
				batteries. The max. vehicle		
				performances are		
				managed and		
				limited by the		
				vehicle design and		
				vehicle		
				management		
				systems (e-motor/		
				converter) and not		
				by the battery		
				itself.		
vehicle on-board charger	lack of	AFIR Regulation (EU)	DG MOVE	lack of harmonized	Medium	Vehicle
	harmonization of	2023/1804		connectors for low-	T2 → 4years	manufacturers
	connectors to the			power charging		
	grid and to			should be		
	charging stations			addressed within		
	for low-power			the AFIR regulation.		
	charging			> this issue is not		
				explicitly related to		
				Swappable Battery		
				Systems and is		
				therefore		
				considered as "out		
				of scope" of		
				Stan4SWAP.		
				However, the issue		
				may be addressed		
				in the project		
				deliverable via a		
				general comment		
				on implementation		
		1		barriers for L-cat.	ı	

	electric vehicles in the EU	

Table 5: Standardization Gaps at Vehicle level

7.4 Standardization Roadmap at swapping charging station level

7.4.1 Pre-Normative Research (PNR)

Area	Maturity level (TRL)	Gaps & Needs (towards TRL 8-9)	Regulatory context	Standardization Iandscape (TCs, standards,)	Standardization expectation	PNR (topics proposition)	Priority level T1 → 2years T2 → 4years T3 → 5years	Stake noider
		- Harmonized fire protection requests (indoor/outdoor).	- EU Battery Regulation (EU) 2023/1542 includes safety & sus- tainability	- IEC 62840-1 & IEC 62840-3 (safety for battery swap sys- tems)	- Harmonized guid- ance for battery swap fire detection & containment.	- R&D on advanced fire detection & suppression systems.		- Fire safety authorities, e.g. TÜV / DEKRA
fire safety for battery systems (swap cabinets, charging areas, storage).	~7 (piloted battery swap stations w/ firesafety features, but no uniform EU approach)	- Streamlined test- ing/certification for Li- ion thermal runa- way & propagation mitigation.	- Municipal building/fire codes vary by country.	- EN 50604 & IEC 62619 (Li-ion battery safety)	- Possibly an extension of IEC 62840-3 for indoor applications.	- Testing pro- tocols for thermal runa- way barriers in multi-bat- tery racks.	High (fire incidents risk damaging public confidence) T1 → 2years	- Battery sta- tion manufactur- ers
		- Unified safety assessment for large battery deployments.	- Insurance & liability regs.	- IEC 60335 series (chargers/appliances)				- Building code experts
								- CEN/CENELEC committees

Accurate calcu-		- Unified SoC/SoH data model across different OEMs/stations.	- EU Battery Regulation 2023/1542 (battery pass- port/data).	- IEC 62840-1 & IEC 62840-3/CDV includes references for BMS data.	- Agreed data struc-	- Real-time SoC algorithms factoring us- age, tempera- ture, discharge cycles.	algorithms oring us- tempera- t, discharge	
lation of battery capacity, SoC, usage patterns for daily ops.	~6–7 (robust BMS exist, but not fully standardized across networks)	- Standard method for energy throughput & battery life predic- tions.	- RED delegated act for secure wireless data transfer.	- IEC 63110 / 63119, ISO 15118 (EV comms)	ture for consistent SoC, SoH, usage re- porting across net- works.	- "Battery Health Score" approach for cost & environ- mental analytics.	proven; standardiza- tion needed for cross- compatibil- ity)	- OEMs
		- Common data ex- change format.					T1 → 2years	- Standardization committees (IEC TC69 WG13, ISO TC22/SC37)
Ensuring (or clarifying) tax exemptions/levies for battery swapping, electricity usage, battery	N/A (policy ma- turity rather than technology)	- Clarify tax treatment (energy supply vs. ser- vice?).	- National energy tax laws.	- Not a standardiza- tion domain per se.	- Not directly about product standards; more about guidelines to standardize how energy usage data is reported (could help authorities).	- Policy re- search on best fiscal models (bat- tery-as- ser- vice vs. elec- tricity sale).	Medium (fiscal incentives can accelerate adoption) T2 → 4years	- Ministries of Transport/En- ergy/Finance

subscription			- AFIR (EU)					
models.			2023/1804 to	- Could align with rele-				
		- EU-level approach	promote e-	vant data format		- Streamlined		- Industrial asso-
		for cross-border sce-	mobility, but	standards if consump-		cross-border		ciations
		narios.	no direct	tion must be uniformly		approach.	Medium (in	Ciations
			"tax"	reported.			support of	
			language.				market de-	
			-				ployment)	
			Competition				T3 → 5years	
			rules for				13 7 Syears	- EU
			possible					Commission (DG
			cross- coun-					TAXUD)
			try					
			differences.					
			- AFIR					
			2023/1804					
	as faile to exist for		fosters alter-					
	~6 (pilots exist for		native fueling	IEC 62040	- Clear aggregator			
	V2G in fleets; still	- Real-time SoC control,	& smart solu-	- IEC 62840 series,	communication	- Control algo-		- DSOs/TSOs
	early for swappa-	aggregator frameworks.	tions but not	potential future ad- aptation for bidi-	standard for swap-	rithms for "mo-		(grid operators)
Using swappable	ble battery net-		explicit for	rectional flow.	pable battery	bile V2G."	Medium-	
batteries as grid	works)		removable	rectional now.	nodes.		High (signif-	
assets (load bal- ancing, V2G, ag-			battery feed-				icant poten-	
gregator-			in.				tial for en-	
driven "virtual					NA - de suisses for	- Market de-	ergy transi-	
power plants").		- Ownership & legal	- National grid	- IEC 63119, ISO	- Mechanisms for	sign for ag-	tion)	- Battery sta-
power plants j.		aspects of "mobile"	codes & elec-	15118-20 for V2G	verifying battery		T1 → 2years	tion operators
		battery feed-in.	tricity market	communications.	ownership, schedul- ing feed-in, settling	based use of		tion operators
		battery recu-iii.	rules.	communications.	payments.	distributed		
					payments.	battery		
						modules.		

Uniform		- Risk models for battery handling/storage.	- No direct EU directive on battery insurance.	- Not a typical IEC/ISO do- main. Possibly referenc- ing risk management frameworks (ISO 31000).	- Industry-driven guidelines on cover- age & liability disclaim- ers.	- Actuarial models for multi- opera- tor battery pools.	Medium	- Insurance sector (Allianz, Zurich, etc.)
		- Ventilation & spacing guidelines.						- National com- mittees (DIN, NF, etc.)
stations (in- door/outdoor, safety zones, me- chanical foot- prints).	some EU cities, no universal ap- proach)	- Standard foot- prints/connectors for ki- osk installations.	- National/local building codes (zon- ing, fire dept approvals).	- Possibly relevant to CENELEC TC 64X (electrical installa- tions).	ping station design, recommended spacing & ventila- tion.	- Building code alignment, best practices for safe installa- tion.	spread deployment & acceptance) T1 → 2years	- Building regu- lators
Standard instal- lation criteria for swapping	~7 (examples in	- Harmonized build- ing/permitting codes across regions.	- AFIR (EU) 2023/1804 sets overarching alt-fuel infra goals, not specifics on swap station siting.	- IEC 62840-3 (removable battery systems, if extended to installation).	- EU-wide guidance (CEN/CLC TS or EN) for battery swap-	- Load-bearing studies for multi-battery racks.	High (critical for wide-	- Station OEMs
		- Economic models & grid acceptance.						- Aggregator platforms - IEC TC69, TC57 standard committees

insurance cov-			- Battery Reg-				(essential	
erage require- ments for bat- tery systems (fire, damage, liability) and	N/A (industry readiness / pol- icy aspects)	- Clear underwriting guidelines for multi-operator systems.	ulation sets performance & safety that insurers factor in.	- EN 50604, IEC 62619 (battery safety) can inform insurability.	- Possibly recog- nized best- prac- tices from insurers & sector alliances.	proach for cross-border claims.	for large- scale rollout, but largely driven by	- Battery- swapping operators
swap-station operations.		- Cross-border coverage consistency.					insurers & operators) T2 → 4years	- Certification/la b testing bodies (TÜV, DEKRA)

Table 6: PNR at charging station/infrastructure level

7.4.2 Standardization Gaps

Area	Maturity level (TRL)	Gaps & Needs (towards TRL 8-9)	Regulatory context	Standardization landscape (TCs, SCs, WGs,)	Standards and Regulations to be amended	Standardization expectation	Priority level T1 → 2years T2 → 4years T3 → 5years	Partner / stake holder
general installation requirements		- Standard footprints/connectors for kiosk installations.	- National/local building codes (zoning, fire dept approvals).	- Possibly relevant to CENELEC TC 64 (electrical installations).				- Building regulators
		- Ventilation & spacing guidelines.		- National code Committee (DIN, NF, etc.)				- National code Committee (DIN, NF, etc.)
fire safety for battery systems (swap cabinets, charging areas, storage).	~7 (piloted battery swap stations w/ fire-safety features, but no uniform EU approach)	- Harmonized fire protection requirements (indoor/outdoor).	- EU Battery Regulation (EU) 2023/1542 includes safety & sustainability.		- IEC 62840-1 & IEC 62840-3 (safety for battery swap systems)	- Harmonized guidance for battery swap fire detection & containment.	High (fire incidents risk damaging public confidence) T1 → 2years	- Fire safety authorities, e.g. TÜV / DEKRA
		- Unified safety assessment for large battery deployments.	- Insurance & liability regs.		- IEC 60335 series (chargers/appliances)			- Building code experts
				- CEN/CENELEC committees				- CEN/CENELEC committees
Risk assessment and risk management	N/A (industry readiness / policy aspects)	- Risk models for battery handling/storage.	- No direct EU directive on battery insurance.		- Not a typical IEC/ISO domain. Possibly referencing risk management frameworks (ISO 31000).	- Industry-driven guidelines on coverage & liability disclaimers. Uniform insurance coverage requirements for battery systems (fire, damage, liability) and swap-station operations.	Medium (essential for large-scale rollout, but largely driven by insurers & operators) T2 → 4years	- Insurance sector (Allianz, Zurich, etc.)

Table 7: Standardization Gaps at charging station/infrastructure level

7.5 Standardization Roadmap at Interfaces and full system management level

7.5.1 Pre-Normative Research (PNR)

Area	Maturity level (TRL)	Gaps & Needs (to- wards TRL 8-9)	Regulatory context	Standardization landscape (TCs, standards,)	Standardization expectation		Priority level T1 → 2years T2 → 4years T3 → 5years	Partner / stake holder
System Level (Swappable Eco- system)	A Backend, with standardized cybersecurity features, is necessary for the data collecting, exchanging and management from different batteries and charging stations belonging to different EaaS operators in order to guarantee the Interoperability	Nothing exists but there are good exam- ples in other business categories (bank, Com- munication Operators, etc.)	Battery Regulation (EU) 2023/1542 (and battery passport) for consideration of data to be collected, stored and shared AFIR Regulation 2023/1804 Cybersecurity (to be completed)	CEN TC 301 CEN CENELEC JTC 13 CEN CENELEC JTC 24	data (& money) collecting, exchange, management within a cybersecure world	define cyber- secure backend with standard com- munication sys- tem and Au- thorization sys- tem	High: topics need further technical under- standing and DPP framework defined, with list of data to be considered T1 → 2years	

Table 8: PNR at interfaces and full system management level

7.5.2 <u>Standardization Gaps</u>

Area	Maturity level (TRL)	Gaps & Needs (towards TRL 8-9)	Regulatory context	Standardizati on landscape (TCs, SCs, WGs,)	Standards and Regulations to be amended	Standardization expectation	Priority level T1 → 2years T2 → 4years T3 → 5years	Partner / stake holder
Data management	A Backend, with standardized cybersecurity features, is necessary for the data collecting, exchanging and management from different batteries and charging stations belonging to different EaaS operators in order to guarantee the Interoperability	good examples in other business categories (bank, Communication Operators,	- CRA (EU) 2024/2847 - Data Act (EU) 2023/2854 - GDPR (EU) 2016/679	IEC TC69 – OCA	IEC63584-210 now at (fast track) CDV level; this is the OCPP2.1 which also features battery swapping use cases; Also IEC 63110, IEC 63119 for roaming, ISO 15118 for EV comms	data (& money) collecting, exchange, management within a cybersecure world	Medium to high T1 → 2years	IEC TC69 – OCA
	Cybersecurity issues regarding authentication have also to be urgently considered			CEN/CENELEC JTC13	EU Battery Regulation (2023/1542)		High T1 → 2years	CEN/CENELEC JTC13
Battery life- cycle management		- Standard method for energy throughput & battery life predictions.	- RED delegated act for secure wireless data transfer.					
		- Common data exchange format.		IEC TC21 (Batteries), IEC TC69 WG13 (Swapping), ISO TC22/SC37(Road vehicles), ISO TC22 SC38	EU Battery passport		Medium to high T2 → 4years	IEC TC21 (Batteries), IEC TC69 WG13 (Swapping), ISO TC22/SC37(Road vehicles), ISO TC22 SC38
Business model	N/A (policy maturity rather than technology)	- Clarify tax treatment (energy supply vs. service?).	- National energy tax laws.		- Taxation law (national legislation)	- Not directly about product standards; more about guidelines	Medium (fiscal incentives can accelerate	- Ministries of Transport/Energy/Fi nance
		- EU-level approach for cross- border scenarios.	to promote e- data format standards if energy us mobility, but no consumption must be reported	to standardize how energy usage data is reported (could help authorities).	is T2 → 4years	- Industrial associations		

		1	- Competition rules		- harmonization of national	Ensuring (or clarifying)		- EU Commission
			for possible cross-		regulations	tax exemptions/levies		(DG TAXUD)
			country differences.		1 Caudions	for battery swapping,		(DG TANOD)
			country unierences.			electricity usage,		
						battery subscription		
						models.		
Smart Grid	~6 (pilots exist for V2G in	- Real-time SoC control,	- AFIR 2023/1804	IEC TC69 WG13	- IEC 62840 series, potential	- Clear aggregator	Medium-High	- DSOs/TSOs (grid
integration	fleets; still early for	aggregator frameworks.	fosters alternative	ile reos wars	future adaptation for	communication	(significant	operators)
megration	swappable battery	aggregator frameworks.	fueling & smart		bidirectional flow.	standard for swappable		operators)
	networks)		solutions but not		Bidirectional now.	battery nodes.	energy	
	networks,		explicit for			buttery modes.	transition)	
			removable battery				T2 → 4years	
			feed-in.				12 7 4years	
		- Ownership & legal aspects of	- National grid codes	IEC TC69 WG9; IEC	- IEC 63119, ISO 15118-20 for	- Mechanisms for	1	- Battery station
		"mobile" battery feed-in.	& electricity market	TC69 JWG1 (with ISO	V2G communications.	verifying battery		operators
			rules.	TC22 SC31)		ownership, scheduling		
				,		feed-in, settling		
						payments.		
		- Economic models & grid		IEC TC69 PT63380;	IEC 63380 series for local	Using swappable	1	- Aggregator
		acceptance.		IECTC69 JWG15 (with	energy management systems;	batteries as grid assets		platforms
				TC57)	IEC63382 series for	(load balancing, V2G,		
					distributed energy systems	aggregator-driven		
						"virtual power plants").		
								- IEC TC69, TC57
								standard committees
Location	~7 (examples in some EU	- Harmonized	- AFIR (EU) 2023/1804		- IEC 62840-3 (removable	- EU-wide guidance	High (critical	- Station OEMs
management	cities, no universal	building/permitting codes	sets overarching alt-		battery systems, if extended	(CEN/CLC TS or EN) for	for widespread	
	approach)	across regions.	fuel infra goals, not		to installation).	battery swapping	deployment &	
			specifics on swap			station design,	acceptance)	
			station siting.			recommended spacing	T2 → 4years	
						& ventilation.	_	
						Standard installation		
						criteria for swapping		
						stations		
						(indoor/outdoor, safety		
						zones, mechanical		
C		Constitution				footprints).		C. alC. all and all
Conformance		- Cross-border coverage					Medium	- Certification/lab
testing		consistency.					T3 → 5years	testing bodies (TÜV, DEKRA)

Table 9: Standardization Gaps at interfaces and full system management level

7.6 Standardization Roadmap about communication

7.6.1 Communication protocols

Communication

Following domains/topics identified are crucial for proper communication, identification and supporting reliable swap operations, as well as complying with EU regulation (i.e. battery-D, battery passport); consequently level of priority is HIGH with a timeline for launching work T1 à 2 years

consequently level of priority is HIGH with a timeline for launching work T1 à 2 years				
Domains/Topics in communication protocols	Issues identified	Comments and suggestions		
Standardized Communication Protocols	Need for standardized communication protocols on battery, vehicle and charging infrastructure level.	 Based on existing Communication protocol standard, suggestion = CAN Also addressed and confirmed as relevant by 		
		stakeholders in July 15th 2025 workshop		
Basic measured sensor infor-	Need for standardized framework/procedures	Base on battery level for further parameters which will be communicated		
mation à current, voltage, tem-		Necessary for comparison		
perature (max., min., average)		Also addressed and confirmed as relevant by stakeholders in July 15th 2025 workshop		
		Actual State of Charge (SOC) level of the bat- tery		
State of Charge (SOC)		 Also addressed and confirmed as of relevant by stakeholders in July 15th 2025 and Oct 06th 2025 workshops 		
State of Llealth (SQLI)		Up-to-date data for the parameters for determining the state of health (SOH)) of batteries as set out in Annex VII of BattReg		
State of Health (SOH)	Standardized protocols	 Also addressed and confirmed as relevant by stakeholders in July 15th 2025 and Oct 06th 2025 workshops 		
BMS state		This signal indicates the BMS state (according with its state machine); states like: idle, discharge, charge,		
Errors		Internal Battery & BMS diagnosis; error identi- fication with standardized error lds		
Max. charge voltage		Requested maximum charge-voltage (pack)		
Min. pack voltage		Minimum allowed pack voltage		

Discharge/charge limit		 necessary for power derating reduction due to high temp, or low voltage, recuperation, ve- hicle, chargers, battery stations,
Battery identification info		Standardized Serial Number that serves as a unique battery identifier. (incl. knowledge about manufacturer, battery model/type)
Actual capacity		Actual battery capacity; Capacity based on SOH =remaining capacity
Evolution of self-discharging rates		According to BattReg
Expected lifetime		Up-to-date data for the parameters for deter- mining the expected lifetime of batteries as set out in Annex VII of BattReg
Date of manufacture		According to BattReg
Energy throughput		According to BattReg
Capacity throughput		According to BattReg
Tracking of harmful events		The tracking of harmful events, such as the number of deep discharge events, time spent in extreme temperatures, time spent charging in extreme temperatures
No. charge-discharge cycles		Number of full equivalent charge-discharge cycles
Software reset info	Who is allowed to perform a software reset and how is that compatible with the CRA?	The battery management system shall include a software reset function, in case economic operators carrying out preparation for re-use, preparation for repurposing, repurposing or remanufacturing need to upload different battery management system software. If the software reset function is used, the original battery manufacturer shall not be held liable for any breach of the safety or functionality of the battery that could be attributed to battery management system software uploaded after that battery was placed on the market
Counter frame incl. cyclic redundancy check	Challenging to fulfil CRA with respect of the Battery Regulation. Clarification on EU-level is needed.	Convenient solution for CAN to meet CRA

Table 10: Standardization Needs for communication protocols

the view of the European Commission or its services.

7.6.2 Visual communication

Communication

Following domains/topics identified, are crucial for proper communication, identification and supporting reliable swap operations, as well as complying with EU regulation (i.e. battery-D, battery passport); consequently level of priority is HIGH with a timeline for launching work T1 à 2 years

consequently level of priority is HIGH with a timeline for launching work T1 à 2 years				
Domains/Topics for visual communication	Issues identified	Comments and suggestions		
Manufacturer info		• Label		
Battery identification info		• Label		
Battery category		• Label		
Place & date of manufacture		• Label		
Weight		• Label		
Capacity		• Label		
Chemistry	Standardization needed to be robust over lifetime of the battery	• Label		
Hazardous substances		• Label		
Usable extinguishing agent		• Label		
Critical raw materials		• Label		
Carbon footprint		• Label		
Safety warnings		• Label		
		Standardized pictograms highly recom- mended		
Separate collection symbol		Marking		
Chemical symbol		Marking		
QR-Code		Marking		
		Base for digital battery passport		
CE-marking		Marking		

Table 11: Standardization Needs for visual communication

7.6.3 Written communication

Communication

Following domains/topics identified, are crucial for proper communication, identification and supporting reliable swap operations, as well as complying with EU regulation (i.e. battery-D, battery passport); consequently level of priority is HIGH with a timeline for launching work T1 à 2 years

Domains/Topics in written communication	Issues identified	Comments and suggestions
Instructions	Battery, Vehicle and Charging infrastructure level	Also addressed and confirmed by stakehold- ers in July 15th 2025 workshop
Safety information	Battery, Vehicle and Charging infrastructure level	 Usage of standardized pictograms Also addressed and confirmed by stakeholders in July 15th 2025 workshop
Technical Documentation	Battery, Vehicle and Charging infrastructure level	Also addressed and confirmed by stake- holders in July 15th 2025 workshop
Declaration of Conformity	Needs to be included in the information package	According to EU Battery Regulation
Recycled Content	Needs to be included in the information package	According to EU Battery Regulation
Electrochemical Performance and durability parameters	Standardization is needed towards performance and durability index	According to EU Battery Regulation

Table 12: Standardization Needs for written communication

7.6.4 <u>Digital communication</u>

Communication

Following domains/topics identified, are crucial for proper communication, identification and supporting reliable swap operations, as well as complying with EU regulation (i.e. battery-D, battery passport); consequently level of priority is HIGH with a timeline for launching work T1 à 2 years

Domains/Topics in digital communication	Issues identified	Comments and suggestions
 Battery Passport Battery Identification Manufacturing data Technical specifications Usage data End-of-life Sustainability 	On various points, a standardized framework, definition, procedure, cal- culation etc. is needed	 Details according to Article 77 + Annex XIII of EU Battery Regulation Open points should be considered in harmonized standards for the EU Battery Regulation Also addressed and confirmed by stakeholders in July 15th 2025 workshop
Information on prevention and management of waste batteries	Needs to be included in the information package	 According to Article 74 of Batt Reg Also addressed and confirmed by stakeholders in July 15th 2025 workshop

Table 13: Standardization Needs for Digital communication

7.6.5 Additional communication items

During Stan4SWAP workshops gathering main categories of stakeholders, including consumers' representatives, a few additional topics have been identified in support of easing information to users. The two topics below would definitely contribute to this aim, but do not necessarily need standardization development; However, the topics really worth to be mentioned, for future consideration.

Other			
Domains/Topics	Issues/propositions raised	Comments and suggestions	
Sounds and spoken warning signals	Addressed by stakeholders during Stan4SWAP July 15th 2025 workshop	This would definitely be a benefit in terms of safety and for the customer, but it is not necessary for the function of the battery or the whole swappable battery eco system. à no need for standardization	
Visual status indicators for SOC and SOH	Addressed by stakeholders during Stan4SWAP July 15th 2025 workshop	This would definitely be a benefit for the customer, but it is not necessary for the function of the battery or the whole swappable battery eco system. à no need for standardization	

Table 14: Addition suggestions

7.7 Standardization Roadmap about validation of swap action at Swapping Charging Station

From topics and issues collected during the Stan4SWAP workshops, organized in a way to get feedback, ideas, and expressions of needs by stakeholders, protocols validation access to swap process at Swapping Charging Station, as well as check about validity of the battery pack for its actual level of application (primary application) or need to move to next "level" (secondary application, end of life), a list of topics has been mapped, where standardization could support harmonization of all processes, and ensure safety, security, money related transaction and liability throughout the process, as well as useful and operational information.

Swappable Batteries Motorcycle Consortium (SBMC), as one of the main stakeholders consulted during the workshops, has mapped such needs based on existing deployment, protocols and processes, market experience, but with the aim to move to unified solutions/options, and, thus, guarantee interoperability and compatibility, while keeping communication with the users and owners of the battery packs, as well as operators.

The main driver for such swap actions related and dedicated standardization roadmap are respectively, safety, integrity, interoperability, that could be summarized as follows²:

Safety

- Electric shock
- Short circuit
- · Thermal runaway or fire

Integrity

- · Grid compatibility
- · Power factor and grid stability
- Distribution integrity (Energy meter)

Interoperability

- Energy/money exchange among different Operators
- Cyber secured data exchange among different Operators
- User swap/charging independency by specific network
 In order to avoid:
 - Market Fragmentation each network operates in isolation
 - Low utilization of stations limited to one brand's users

² From BluEV, member of SBMC, promoting standardization development

- Higher cost per kWh due to duplicated infrastructure and low throughput
- Limited user convenience users can't swap outside their brand's network
- Excessive station deployment every operator must cover the entire city independently

Table 15, hereafter, sums-up domains/topics where Pre-Normative Research work supported by EU funding would help boosting safe, secure, and efficient swapping charging stations development, as key element for market deployment and feeding further standardization development.

Validation of swap actions at the swapping charging station T1 à 2 years				
Domains/Topics	Issues/needs/information to communicate	Comments and suggestions		
	Compartment Dimensions	Safe docking system with automatic locking and connection mechanisms		
Cuanning Station Unit Scane	Overall Dimensions	Defines the overall size and footprint of the station		
Swapping Station Unit Scope (Physical)	Number of slots	Indicates the total battery capacity the station can handle simultaneously		
	Location space and fixa- tion	Distance between walls, depending on maintenance door and available space		
	IP Rating	i.e. IP54 rain proof or higher		
Swapping Station Unit Scope (En-	Lightning Protection Level	IEC 62305		
vironmental)	Ventilation (Outdoor-di- rect sun)	Station and per slot ventilation		
	Heating System	Battery compartment heating system		
	Flood Detection	Detects water ingress to prevent electrical hazards		
	Smoke Detector	Alerts early signs of fire through smoke detection		
Swanning Station Unit Scans	Fire Extinguisher	Automatically suppresses fire in battery slots using aerosol or water		
Swapping Station Unit Scope (Safety)	Emergency Power Suppression	Cuts power in critical emergencies		
	External Emergency Shutdown	Manual shutdown for rapid response		
	Per Channel Temperature Sensor	Backup for BMS sensors to detect overheating		

	Anti-theft Measures	Prevents theft with motion detection alarm (CCTV, locks,)
	Surge Arrestors & Circuit Breakers	Protect station from voltage spikes and electrical faults
	Energy Meter	Certified meter with proper precision class (IEC 62052-11) with RS485 or CAN communication
Swapping Station Unit Scope (Electrical)	Charging Efficiency	Smart charger with more than 93% of efficiency with adequate power factor and low harmonics to not affect the grid
	AC Source	Tension/frequency/nb of phases with adequate earthing
	Infrastructure	Power budget and maximum grid load (i.e. compliance with regulation)
	Charging Protocol	Chemistry independency: LFP/NCM or any other chemical. Voltage levels: 48V/60V/72V. CC/CV charging with high-rate continuous feedback loop between BMS and charger. Cybersecurity authentication
Swapping Station Unit Scope	Display Screen	For swapping process feedback and ads
(Communication & Other features)	Audio Feedbacks	For swapping process feedback
	Noise Level	Depends on country, state or city
	Customer/Contract Identi- fication & Swap Process	QR, NFC and Bluetooth (Multiple operator Interoperability)
	Backup Power for Opera- tion and Sensors (No charging)	Depending on the batteries to power the control circuits and communication gateway
Battery Passport	Information from QR code or from BMS	Extraction of Information for identification and validation phase towards swapping, decision about life cycle level, etc
Interoperability	Dimension + Connector + Communication Battery-Station interoperability	Check, inform, correct, etc
	Subscriber-Operator communication interoperability	How and Which information to share and to whom, which in a black box, GDPR compliant, etc

Table 15: Needs for PNR and standardization work at swap action level

In addition to Table 15 topics ensuring safe, secure and efficient swap process at swapping charging station, Stan4SWAP recommends further EU funded projects to support and promote digital twin development, both at city level to identify where to ideally install charging stations, as well as at charging station level to optimize its capacities, including availability of storage capacities, and its usages, services to and with the grid.

8. Recommendations and further steps

8.1 Regulation

Bringing the research and innovation community together with industrial stakeholders early on into the standardisation process is key to identify the issues and priorities, share views on future developments and stakeholder/users' needs, and to provide recommendations to the European Commission and European Standardization Organizations for future standardization needs, as well as alignment of pieces of legislation. It is thus recommended to further refer to standards in the regulatory landscape, and ideally to harmonized standards, as a way to set a clear pathway of compliance.

This means a recommendation to the European Commission to consider emitting Standardization requests to European Standardization organizations (ESOs) covering the entire swappable battery ecosystem, sub-systems, components, and services. This will boost innovation to market(s), and EU leadership and competitiveness enhancement.

Modular design of batteries isn't considered so far in any regulation. Fulfilling this "gap" would help in meeting modularity in battery packs, leading to solving challenges in interoperability between vehicles and swapping stations for instance. This includes design for recycling.

Current regulatory framework does not consider the EU WVTA without including the dedicated propulsion battery. In swappable system market, the vehicle and the owner of the vehicle, are not necessarily owning the batteries. Stan4SWAP recommends amendment of the regulation to facilitate EU WVTA for a vehicle which is designed to be powered by standardized swappable batteries³.

8.2 Support of innovation and PNR

The work carried out leads to a consolidated and structured proposal of Pre-Normative Research (PNR) topics that are critical for the deployment of safe, interoperable, and sustainable swappable battery systems (SBS) across Europe. The applied methodology ensures full alignment with the technical, regulatory, and stakeholder-specific findings from Stan4SWAP.

By clustering the identified topics into four domains—battery, vehicle, charging infrastructure, and system interfaces—, as well as for validating the swap action, the consortium was able to address the full scope of the SBS ecosystem. Each domain includes short-term (T1 up to 2 years) "quick win" topics, medium term (T2 up to 4 years) and long-term (T3 up to 5 years) challenges requiring more fundamental research.

Tables 2, 4, 6, 8, 15 in chapter 7 above list main topics where PNR will be essential to boost maturity raise and then initiate standardization development. It is, thus, recommended to include these topics in future EU funding related calls, as a way to support EU leadership in this innovative mobility solutions.

The resulting tables of proposals provides:

- A clear mapping of research gaps,
- Corresponding TRL assessments,
- Associated standardization potential,
- Recommendations for stakeholder involvement.

³ this issue will be similar for all other categories of vehicles with swappable batteries systems (i.e. cars and trucks, as from the Alternative Fuel Infrastructure Regulation (AFIR).

It support elements towards drafting future EU funding calls.

There are already several partners with the key expertise towards applying to such EU funding calls in the field of battery exchange between manufacturers and operators of swapping charging stations, and different two-wheeled vehicle manufacturers. The driving companies in this area are already organized in relevant associations such as the SBMC (Swappable Batteries Motorcycle Consortium).

8.3 Standardization development

From the consolidated and structured list of topics for standardization, as from tables 3, 5, 7, 9, 10-13, 15 in chapter 7 above, main recommendations from Stan4SWAP are:

- 1. A priority to support the above mentioned PNR topics as essential inputs towards feeding future standardization development
- 2. Development of a CWA (CEN/CENELEC Workshop Agreement) for the swapping charging station, to specify required technical specification in support of interoperability, compatibility, safe and secure operations, and relevant validation of the batteries and communication to validate the swap action.

Recommendations about which data to standardize

About sets of data, as relevant for ensuring interoperability and compatibility, it has to be considered that each data bit has an economic impact and an ecologic footprint, when it is created, stored, processed and transmitted. Thus, Stan4SWAP recommends to initially limit the required data elements to those which are essentially needed for the sole functioning of the swappable batteries eco-system, including compatibility and interoperability.

This set of data is very stable, as it is only amended in rare cases when the core/basic functionality of the eco-system changes, or when the requirements related to interoperability and compatibility are modified.

Minimum Set of Data:

It is mandatory to respect this set of data for the implementation of a standardized eco-system and interoperable and compatible sub-systems and components.

Such data may be called the "Minimum Set of Data", that could be common between regions (global level).

Additional set of data:

Additional set of data should be defined, containing data, which is required by applicable regulations, and other relevant standards, granting compliance with the applicable legal requirements and the applicable state-of-the-art (i.e. with regards to safety, security, and product liability).

This set of data is also relatively stable, as it is only amended when regulatory requirements are changing, or in case of relevant progress of the applicable state-of-the-art.

Depending on the legal requirements and the state-of-the art in the Region of implementation, this set of data may be mandatory as well. So, in the context of European standardization, this

the view of the European Commission or its services.

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101135417. Additionally, This Work has received funding from the Swiss State Secretariat for Education, Research and Innovation (SERI) for its Associate Partner The content of this publication is the sole responsibility of the Consortium partners listed herein and does not necessarily represent

data might complete the "Minimum Set of Data". However, in view of international standardization it is recommended to consider this data as a separate set of data (Regional context).

Such data may be called the "Additional Mandatory Data".

"Additional Optional Data (support data)":

A third set of data may be defined for data which enables and/or supports the practical implementation of the eco-system or its sub-systems and components, including data which is essential for the implementation of viable business applications and related processes as well as the overall management of the eco-system (i.e. user registration, billing, payment and other data which enables the monitoring of sub-systems and components).

Especially in the early years of implementation of the eco-system, the content of this set of data will change frequently. Since such data is neither essential for the sole operation of the eco-system, nor for granting interoperability and compatibility (see "Minimum Set of Data") and also not for compliance with the (regional) regulatory framework (see "Additional Mandatory Data"), one may say that such set of data does not need to be standardized at all, to allow for the necessary flexibility of data content.

But, this is not necessarily the case, because besides the functioning of sub-systems and components within the standardized eco-system, it is necessary to understand the terms "compatibility" and "interoperability" also in a wider context, including business models and system management.

It is therefore advisable to define a broad set of "support data" which covers as much as possible the already known and potentially needed data related to business applications and system management. This set of data should not be mandatory, and the standard should not prevent the introduction of additional data which is not (yet) included in the standardized set of data.

Such data may be called the "Additional Optional Data".

Given that the standardized set of data will likely need to be amended over time and considering that the "Additional Mandatory Data" is defined in a regional context, it is advisable to decouple the standard for the set of data from other generic standards related to the eco-system, subsystems or components.

8.4 Education and Training

Education and Training is a highly important topic, where Stan4SWAP recommends a careful attention and urges towards actions. Indeed, while standardization is a booster of innovation to markets, there are still major misunderstandings among stakeholders, concerning the role and strong benefit of standards. In addition to raising awareness and organizing information sessions with enlarged communication campaigns, there is also a critical need for experts to actively engage in the standardization activities within the Technical Committees and their Working Groups.

These aspects have been comprehensively addressed by Stan4SWAP WP 8 and its task T8.4 "Education and Training", which provides education and training materials for standardization in the mobility and transport ecosystem of swappable batteries within the scope of Stan4SWAP. In particular, it presents four outputs available at <u>Education & Training | Stan4swap</u>:

- Handbook, on "Standardization and Standards for Mobility and Transport in the Ecosystem of Swappable Batteries" with six specific case studies
- Learning video, "Standardization and standards for mobility and transport in the ecosystem of swappable batteries – basic topics"
- Learning video, "Standardization and standards for mobility and transport in the ecosystem of swappable batteries advanced topics"
- Stan4SWAP factsheets

The material will be made widely available throughout <u>Stan4SWAP channels and platforms</u>, as well as through relevant additional initiatives of partners and stakeholders.

9. Conclusion

Stan4SWAP Standardization Roadmap about Swappable Battery System for LVs has been developed by considering such an eco-system as a relevant, viable, and sustainable solution for decarbonizing urban mobility, and thus contributing to EU´s commitment towards carbon neutrality by 2050.

Context of the work has been about:

• Political - Political Support:

Impact and market boost of government policies, subsidies, and regulatory frameworks on the development of electric vehicles and related battery swapping infrastructure

• Economic - Cost Reduction:

Emphasis on **economies of scale** to lower production costs for and more efficient use of batteries and infrastructure while introducing flexible business models and more affordable vehicles

• Technological - Interoperability:

Importance of standardization, interoperability, and reliability among batteries, vehicles, and charging stations to **ensure user convenience and enhance market acceptance**.

Challenges faced at market level:

• Economic - Priorities:

Users seek affordability and **flexible business models**, while vehicle and battery manufacturers focus on production **costs and profitability**

• Technological / Social - Expectations:

Users prioritize lightweight and **user-friendly** batteries, while battery and vehicle manufacturers face **performance** constraints

Stan4SWAP concentrated on:

• Standardization Issues:

Lack of uniform standards for battery design and interoperability between different manufacturers

Investment Costs:

The significant **upfront investments** required for establishing a network of battery swapping stations

Regulatory:

Varying regional regulations (in municipalities) and safety standards for battery swapping stations

• User Acceptance:

Users may still experience range anxiety due to inadequate infrastructure and the perceived inconvenience of battery swapping compared to traditional refueling

Durability and Reliability Concerns:

Batteries in swappable systems must withstand frequent cycling and harsh environmental conditions, necessitating **robust designs** that can be costly and complex to achieve

Stan4SWAP scope:

- Benefits of swappable battery systems:
 - Reduction of emissions in urban areas through electrification
 - Swappable battery systems can alleviate range anxiety and enhance usability
- Importance of Standardization:
 - Essential for **interoperability** across vehicles, batteries, and infrastructure
 - Reduces costs through economies of scale and enhances market attractiveness
- Market Success Factors:
 - Coordination among stakeholders to harmonize differing priorities and developing the best possible technical system, which can be then successful in the market
 - Establishment of European standards to facilitate widespread adoption of swappable battery systems

This full roadmap highlights areas where existing standards are insufficient or non-existent, provides insights into technical requirements, safety protocols, and interoperability challenges essential for market deployment and consumer trust. These findings set the groundwork for developing targeted standardization efforts crucial for the deployment of safe, interoperable, and sustainable swappable battery eco-system across Europe.

With an emphasis on:

- A clear mapping of standardization gaps
- Associated standardization potential
- Recommendations for stakeholder involvement

Stan4SWAP also identifies several categories of recommendations:

- Recommendation about improving and aligning pieces and elements of regulation and policies
- Recommendation for further support to PNR topics towards boosting maturity and meeting standardization "ready TRL" (i.e. Horizon Europe IA), including support to pilots and demos at full scale and real use cases/context (i.e. city tests)
- Recommendation for launching standardization development, EN, TS, TR, CWA (i.e. CWA about swappable charging station for L-cat battery system and communication protocols towards validating swap action, SoH of the pack for proper life cycle related allocation, contribution to local grid storage capacity -, etc...)

- Recommendation about considering additional roles of charging stations (i.e. new business models – BaaS, battery ownership, pricing contribution of charging station (storage) in support of decentralized grid management, ...)
- **Education and Training**, raising awareness about role and relevance of standards, motivating experts to join standardization drafting teams,

Glossary

L-category Vehicle (LV) – Any two-three and four wheeled vehicle classified according to regulation (EU) 168/2013 Annex I.

